SOLUTIONS
USE-CASES
LE LAB
ARTICLES
NOUS SOMMES
CONTACT
CARRIÈRES
NEWS
ACCES ENABLERS
Trier par mots-clés
Algorithmes
algorithmique
Améliorationdeprocess
Audit
AutoML
BeEnabler
BigData
CNN
ComputerVision
ContrôleQualité
Cosmétique
Data
DataGouvernance
DataScience
DataVisualisation
DeepLearning
DétectionAnomalie
DétectionAnomalies
DétectionObjets
Energie
equationsdifferentielles
Event
Fewshotlearning
Forecast
Forecasting
Fraude
GAN
GenAI
Géoscience
GPU
IA
IA generative
Images
Immobilier
Industrialisation
Innovation
IntelligenceArtificielle
Interprétation
LabInsights
large language models
LectureIntelligente
LLM
LLMs
MachineLearning
MaintenancePrédictive
MCMC
MLops
Modèle
NLP
OpenCV
Optimisationdeproduction
Prévision
probabiliste
ProjetCollaboratif
Python
ReconnaissanceObjets
Réseau
Rewind
RH
Segmentation
SHAP
Tensorflow
TimeSerie
TimeSeries
virtualsensor
SOLUTIONS
USE-CASES
LE LAB
ARTICLES
NOUS SOMMES
CONTACT
>WE HIRE<
CARRIÈRES
NEWS
ACCES ENABLERS
OK
Industrie
CONTRÔLER AUTOMATIQUEMENT LES EPI À L’ENTRÉE DES SITES SENSIBLES
#
ComputerVision
#
DétectionObjets
#
MLops
OBJECTIFS
Détection des équipements de sécurité et de distanciations (masques, casques ect…)
Analyse des flux vidéos d’une caméra en temps réel
Entrainement séparé sur la détection de chaque équipement.
ALGORITHMES
Labellisation des données d’entraînements
Construction d’un modèle de Deep Learning
Utilisation de YOLO v3
Ré-entrainement du modèle
Parlez-en AVEC UN EXPERT !
Pierre Duranton
COO Associé
pduranton@aquiladata.fr
> JE LE CONTACTE !
VOIR TOUS LES USE-CASES