SOLUTIONS
USE-CASES
LE LAB
ARTICLES
NOUS SOMMES
CONTACT
CARRIÈRES
NEWS
ACCES ENABLERS
Trier par mots-clés
Algorithmes
algorithmique
Améliorationdeprocess
Audit
AutoML
BeEnabler
BigData
CNN
ComputerVision
ContrôleQualité
Cosmétique
Data
DataGouvernance
DataScience
DataVisualisation
DeepLearning
DétectionAnomalie
DétectionAnomalies
DétectionObjets
Energie
equationsdifferentielles
Event
Fewshotlearning
Forecast
Forecasting
Fraude
GAN
GenAI
Géoscience
GPU
IA
IA generative
Images
Immobilier
Industrialisation
Innovation
IntelligenceArtificielle
Interprétation
LabInsights
large language models
LectureIntelligente
LLM
LLMs
MachineLearning
MaintenancePrédictive
MCMC
MLops
Modèle
NLP
OpenCV
Optimisationdeproduction
Prévision
probabiliste
ProjetCollaboratif
Python
ReconnaissanceObjets
Réseau
Rewind
RH
Segmentation
SHAP
Tensorflow
TimeSerie
TimeSeries
virtualsensor
SOLUTIONS
USE-CASES
LE LAB
ARTICLES
NOUS SOMMES
CONTACT
>WE HIRE<
CARRIÈRES
NEWS
ACCES ENABLERS
OK
Industrie
DÉTECTER AUTOMATIQUEMENT DES DÉFAUTS SUR PIÈCES FORGÉES
#
ComputerVision
#
DétectionAnomalies
#
DétectionObjets
#
MaintenancePrédictive
OBJECTIFS
Détection de défauts sur des pièces de fonderie
Classification des défauts en fonction de leurs criticités et de leurs types
Annotations des images pour vérification
ALGORITHMES
Utilisation de méthode de Deep Learning pour la détection des défauts sur les images.
Développement d’un classificateur automatique de défauts à partir de caractéristiques extraites des images et traités par des CNN/RNN.
Parlez-en AVEC UN EXPERT !
Tristan Barbagelata
Business Manager
tbarbagelata@aquiladata.fr
> JE LE CONTACTE !
VOIR TOUS LES USE-CASES